

100BASE-T1 Ethernet PHY Transceiver

Highlights

- · Single-chip Ethernet physical layer transceiver
- Compliant with IEEE 802.3bw-2015 (100BASE-T1)
- Supports MII/RMII/RGMII (RGMII LAN8770R only)
- · OPEN Alliance TC10 support / wake-up support
- · Ultra low power sleep
- FlexPWR[®] technology power management
- · Advanced Signal Quality Indicator (SQI)
- · Over-temperature and under-voltage protection
- · Comprehensive status interrupt support
- · Extended cable reach
- Small footprint 32-pin VQFN (5 x 5 mm) and 36-pin VQFN (6 x 6 mm) with wettable flanks
- · AEC-Q100 automotive product qualification
- Grade 1 Automotive temperature range (-40°C to +125°C)
- · Microchip Functional Safety Ready

Target Applications

- · Advanced Driver-Assistance Systems (ADAS)
- · Infotainment
- Telematics & Smart Antennas
- In-Vehicle Backbone
- Gateways

Key Benefits

- High-performance 100BASE-T1 Ethernet PHY
 - Compliant with IEEE 802.3bw-2015
 - 100Mbps over single balanced twisted pair cable
 - OPEN Alliance TC10 sleep/wake-up support
 - Supports cable lengths up to at least 15m
 - 3-level Pulse Amplitude Modulation (PAM-3) line coding
 - Echo cancellation
 - Jumbo frame support up to 16KB
 - On-chip termination resistors for balanced UTP cable
- MII/RMII/RGMII Interfaces (RGMII LAN8770R only)
 - 125MHz reference clock output (LAN8770R only)
 - 25MHz / 50MHz RMII clock mode
 - Reverse MII mode for back-to-back connection of two PHYs (LAN8770M only)
 - SMI interface for rapid register access
- · Low RF Emissions
 - Integrated transmission filtering
 - MII/RMII/RGMII drive strength adjust
 - 125MHz RGMII clock slew rate adjust
- EtherGREEN[™] Energy Efficiency
 - Ultra low-power sleep mode (typical 12μA) with local wake-up support (OPEN Alliance TC10)
 - Sleep request recognition
 - IDLE detection on MDI
 - WAKE_IN pulse detection wakeup
 - INH output for enable/disable of ECU supply
 - ENABLE dedicated PHY enable/disable input pin
- Resets
 - Pin reset (RESET N)
 - Power-On Reset (POR) with brownout protection
 - Software reset
- Packaging
 - LAN8770M: 32-pin (5 x 5 mm) wettable VQFN
 - LAN8770R: 36-pin (6 x 6 mm) wettable VQFN
- Environmental
 - AEC-Q100 Grade 1 Automotive temperature range (-40°C to +125°C)
- · Functional Safety
 - FMEDA Computation Spreadsheet (Evaluation of Random Hardware Failures Metric)
 - Functional Safety Manual

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 INTRODUCTION

1.1 General Description

The Microchip LAN8770 is a compact, cost-effective, single-port 100BASE-T1 Ethernet physical layer transceiver compliant with the IEEE 802.3bw-2015 specification. The device provides 100 Mbit/s transmit and receive capability over a single Unshielded Twisted Pair (UTP) cable, supporting cable lengths of up to at least 15m. The LAN8770 is available in a Grade 1 Automotive (-40°C to +125°C) temperature range and is optimized for AEC-Q100 automotive use cases such as Automated Driver-Assistance Systems (ADAS), infotainment, telematics, smart antennas, and in-vehicle backbones.

The LAN8770 supports communication with an Ethernet MAC via standard MII/RMII/RGMII interfaces (RGMII LAN8770R only). An optional 125MHz or 50MHz reference clock output is provided for RGMII and RMII applications, respectively. Reverse MII mode (LAN8770M only) provides the ability to connect two PHYs back-to-back. An integrated SMI interface provides rapid register access and configuration.

Microchip's LAN8770 EtherGREEN[™] energy efficient technology provides low-power 100BASE-T1 PHY operation along with an ultra low-power sleep mode with local wake-up support (partial networking), sleep request recognition, and various wake/enable signals for low power modes. FlexPWR® variable I/O and core power supply voltages provide flexible design options and power saving opportunities.

Advanced PHY diagnostics provide the user with troubleshooting capabilities such as cable defect detection of shorts or opens, a receiver Signal Quality Indicator (SQI), over-temperature, under-voltage protection, comprehensive status interrupt support, and various loopback and test modes.

The Microchip LAN8770 family includes the following devices:

- LAN8770M
- LAN8770R

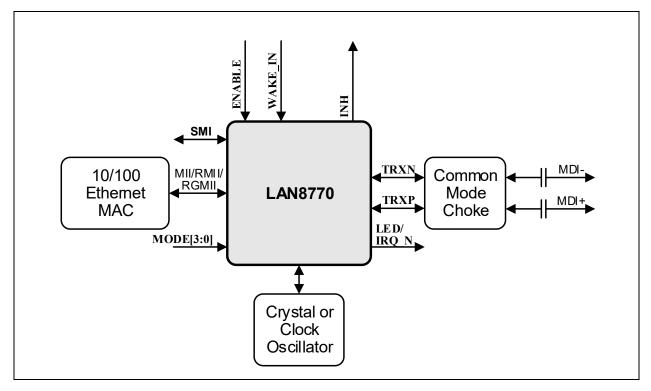
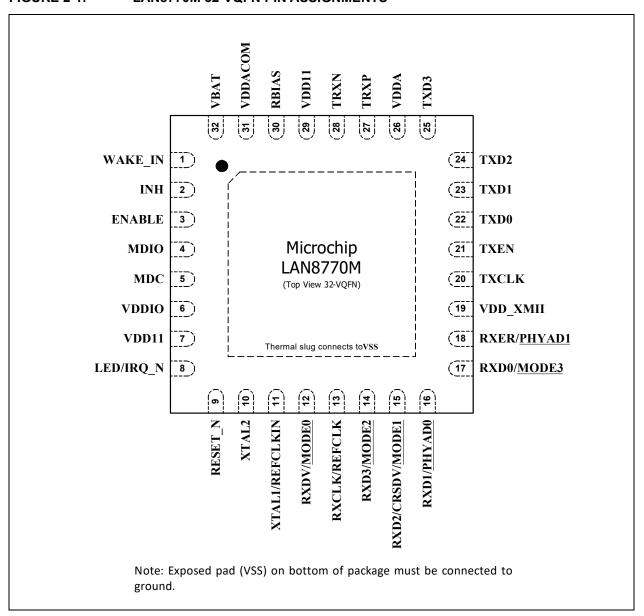

Device specific features that do not pertain to the entire LAN8770 family are called out independently throughout this document. Table 1-1 provides a summary of the feature differences between family members:

TABLE 1-1: LAN8770 FAMILY FEATURE MATRIX

Part Number	Package	MII Support	RMII Support	RGMII Support	125MHz Reference Clock Output	Reverse MII Mode	Internal 1.1V Regulator Disable Option	ENABLE Pin Support	INH Pin Support	WAKE_IN Pin Support	AEC-Q100 -40° To 125°C
LAN8770M	32-VQFN	X	х			Х		X	X	X	X
LAN8770R	36-VQFN	X	X	X	Х		х	Х	Х	Х	Х

A system-level block diagram is shown in Figure 1-1.

FIGURE 1-1: LAN8770 SYSTEM-LEVEL BLOCK DIAGRAM



2.0 PIN DESCRIPTIONS

The pin assignments for the LAN8770M are detailed in Section 2.1, LAN8770M Pin Assignments. The pin assignments for LAN8770R are detailed in Section 2.2, LAN8770R Pin Assignments. Pin descriptions are provided in Section 2.3, Pin Descriptions.

2.1 LAN8770M Pin Assignments

FIGURE 2-1: LAN8770M 32-VQFN PIN ASSIGNMENTS

Note: Configuration straps are identified by an underlined symbol name. Signals that function as configuration straps must be augmented with an external resistor when connected to a load.

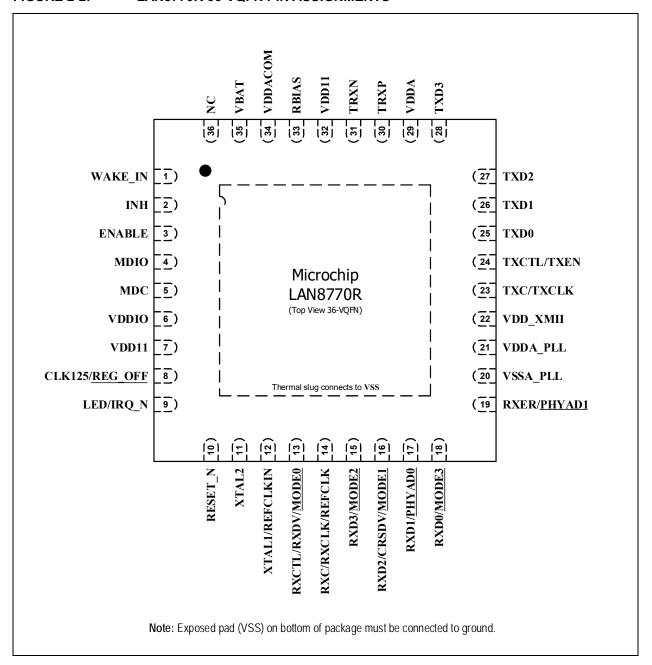

LAN8770

TABLE 2-1: LAN8770M 32-VQFN PIN ASSIGNMENTS

Pin Num	Pin Name	Pin Num	Pin Name
1	WAKE_IN	17	RXD0/MODE3
2	INH	18	RXER/ <u>PHYAD1</u>
3	ENABLE	19	VDD_XMII
4	MDIO	20	TXCLK
5	MDC	21	TXEN
6	VDDIO	22	TXD0
7	VDD11	23	TXD1
8	LED/IRQ_N	24	TXD2
9	RESET_N	25	TXD3
10	XTAL2	26	VDDA
11	XTAL1/REFCLKIN	27	TRXP
12	RXDV/MODE0	28	TRXN
13	RXCLK/REFCLK	29	VDD11
14	RXD3/MODE2	30	RBIAS
15	RXD2/CRSDV/MODE1	31	VDDACOM
16	RXD1/ <u>PHYAD0</u>	32	VBAT
<u>L</u>	Exposed Pad (VSS)	must be connected	to ground.

2.2 LAN8770R Pin Assignments

FIGURE 2-2: LAN8770R 36-VQFN PIN ASSIGNMENTS

Note: Configuration straps are identified by an underlined symbol name. Signals that function as configuration straps must be augmented with an external resistor when connected to a load.

LAN8770

TABLE 2-2: LAN8770R 36-VQFN PIN ASSIGNMENTS

Pin Num	Pin Name	Pin Num	Pin Name
1	WAKE_IN	19	RXER/ <u>PHYAD1</u>
2	INH	20	VSSA_PLL
3	ENABLE	21	VDDA_PLL
4	MDIO	22	VDD_XMII
5	MDC	23	TXC/TXCLK
6	VDDIO	24	TXCTL/TXEN
7	VDD11	25	TXD0
8	CLK125/ <u>REG_OFF</u>	26	TXD1
9	LED/IRQ_N	27	TXD2
10	RESET_N	28	TXD3
11	XTAL2	29	VDDA
12	XTAL1/REFCLKIN	30	TRXP
13	RXCTL/RXDV/MODE0	31	TRXN
14	RXC/RXCLK/REFCLK	32	VDD11
15	RXD3/MODE2	33	RBIAS
16	RXD2/CRSDV/MODE1	34	VDDACOM
17	RXD1/ <u>PHYAD0</u>	35	VBAT
18	RXD0/MODE3	36	NC

2.3 Pin Descriptions

This section contains descriptions of the various LAN8770 pins. The " $_{N}$ " symbol in the signal name indicates that the active, or asserted, state occurs when the signal is at a low voltage level. For example, RESET_N indicates that the reset signal is active low. When " $_{N}$ " is not present after the signal name, the signal is asserted when at the high voltage level.

The terms assertion and negation are used exclusively. This is done to avoid confusion when working with a mixture of "active low" and "active high" signal. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

TABLE 2-3: PIN DESCRIPTIONS

Name	Symbol	Buffer Type	Description				
		MII/RMII/F	RGMII Signals				
Transmit Data 0	TXD0	VIS-VDD_XMII	Transmit data bus bit 0 (all modes)				
Transmit Data 1	TXD1	VIS-VDD_XMII	Transmit data bus bit 1 (all modes)				
Transmit	TXD2	VIS-VDD_XMII	Transmit data bus bit 2 (MII/RGMII modes)				
Data 2 (MII/RGMII Modes)			Note: In RMII mode, this signal is not used and must be grounded.				
Transmit	TXD3	VIS-VDD_XMII	Transmit data bus bit 3 (MII/RGMII modes)				
Data 3 (MII/RGMII Modes)			Note: In RMII mode, this signal is not used and must be grounded.				
Transmit Enable (MII/RMII Modes)	TXEN	VIS-VDD_XMII	Indicates that valid transmission data is present on TXD[3:0]. In RMII mode, only TXD[1:0] provide valid data.				
			Note: When the LAN8770R is in RGMII mode, the TXEN and TXER functions are combined into the TXCTL pin.				
Transmit Clock (MII Mode)	TXCLK	VO-VDD_XMII	25MHz clock used to latch data from the MAC into the transceiver.				
			Note: This signal is not used in RMII mode.				
Receive Data 0	RXD0	VO-VDD_XMII	Receive data bus bit 0 (all modes)				
Receive Data 1	RXD1	VO-VDD_XMII	Receive data bus bit 1 (all modes)				
Receive	RXD2	VO-VDD_XMII	Receive data bus bit 2 (MII/RGMII modes)				
Data 2 (MII/RGMII Modes)			Note: This signal is not used in RMII mode.				
Receive	RXD3	VO-VDD_XMII	Receive data bus bit 3 (MII/RGMII modes)				
Data 3 (MII/RGMII Modes)			Note: This signal is not used in RMII mode.				

TABLE 2-3: PIN DESCRIPTIONS (CONTINUED)

Name	Symbol	Buffer Type	Description			
Receive Error (MII/RMII Modes)	RXER	VO-VDD_XMII	This signal is asserted to indicate that an error was detected somewhere in the frame presently being transferred from the transceiver.			
			Note: This signal is optional in RMII mode.			
			Note: When the LAN8770R is in RGMII mode, the RXDV and RXER functions are combined into the RXCTL pin.			
Receive Data Valid (MII Mode)	RXDV	VO-VDD_XMII	Indicates that recovered and decoded data is available on the RXD[3:0] pins.			
			Note: When the LAN8770R is in RGMII mode, the RXDV and RXER functions are combined into the RXCTL pin.			
Receive Clock (MII Mode)	RXCLK	VO-VDD_XMII	In MII mode, this pin is the 25MHz receive clock output.			
Reference Clock (RMII Mode)	REFCLK	VO-VDD_XMII	50MHz RMII reference clock output.			
Carrier Sense / Receive Data Valid (RMII Mode)	CRSDV	VO-VDD_XMII	This signal is asserted to indicate the receive medium is non-idle in RMII mode.			
Transmit Clock (RGMII Mode)	TXC	VIS-VDD_XMII	25MHz clock used to latch data from the MAC into the PHY.			
			Note: This pin is available in the LAN8770R only.			
Transmit Control (RGMII Mode)	TXCTL	VIS-VDD_XMII	Indicates both the transmit data enable (TXEN) and transmit error (TXER) functions per the RGMII specification. Indicates the presence of valid transmit data and control signals.			
			Note: This pin is available in the LAN8770R only.			
Receive Clock	RXC	VO-VDD_XMII	25MHz clock used to transfer data to the MAC.			
(RGMII Mode)			Note: This pin is available in the LAN8770R only.			
Receive Control (RGMII Mode)	RXCTL	VO-VDD_XMII	Indicates both the receive data valid (RXDV) and receive error (RXER) functions per the RGMII specification. Indicates the presence of valid receive data and carrier sense.			
			Note: This pin is available in the LAN8770R only.			
125MHz	CLK125	RGMII	125MHz RGMII reference clock output to the SoC MAC.			
Reference Clock Output (RGMII Mode)			Note: This clock is enabled by default when the device is strapped into RGMII mode. It may be disabled via register settings.			
			Note: This pin is available in the LAN8770R only.			

TABLE 2-3: PIN DESCRIPTIONS (CONTINUED)

Name	Symbol	Buffer Type		Description	
		Et	hernet		
Ethernet TX/RX Positive Terminal	TRXP	AIO	Positive terminal for transmit/receive signal.		
Ethernet TX/RX Negative Terminal	TRXN	AIO	Negative to	erminal for transmit/receive signal.	
		Serial Mana	gement Inte	rface	
SMI Data Input/ Output	MDIO	VIS-VDDIO/ VO-VDDIO	Serial Mar	nagement Interface data input/output.	
SMI Clock	MDC	VIS-VDDIO	Serial Mar	nagement Interface clock.	
		Misc	ellaneous		
External 25MHz Crystal Input	XTAL1	ICLK	External 25MHz crystal input.		
External Clock Input	REFCLKIN	ICLK	Single-ended clock oscillator input. A frequency of 25Mb should be used in all modes except RMII, which require 50MHz. Note: When using a single-ended clock oscillater		
			Note:	XTAL2 should be left unconnected. This input is 3.3V tolerant, but any input must meet the V_{IH} and V_{IL} parameters for the ICLK buffer type.	
External 25MHz Crystal Output	XTAL2	OCLK	External 2	5MHz crystal output.	
Enable	ENABLE	Al	Enable. When asserted, the part is enabled. If this pin is driven low then the part is placed into its lowest power consuming state (DISABLE). Note: This pin must remain high during Sleep mode. If an external pull-up is used for this pin, pull up		
				to VBAT, not VDDIO.	
Inhibit	INH	VO-VBAT	ply unit. IN enable th the sleep	ed to switch on/off the main external power sup- NH drives high during normal operation to e external power supply. It is high-Z during state to switch off the external power sup- means inhibit shutdown of the external power	
			Note:	This pin operates off of VBAT domain.	
			Note:	RESET_N assertion does not affect the state of this pin.	
			Note:	This signal is active high.	
			Note:	This pin is open-source. An external pull-down to ground is needed.	

TABLE 2-3: PIN DESCRIPTIONS (CONTINUED)

Name	Symbol	Buffer Type	Description		
Wake Input	WAKE_IN	VIS-VBAT	Wakeup Input. Asserted to move the part out of sleep. This pin implements the optional wake input described in the TC10 specification.		
			Note: This pin operates off of the VBAT domain.		
LED	LED	VOD	LED output. Active low and open-drain. The default function for this pin is IRQ_N.		
Interrupt	IRQ_N	VOD	Device interrupt. Active low and open drain. Note: Float pin when unused.		
System Reset	RESET_N	VIS-VDDIO	System rest. This pin is active low.		
,	_		Note: If unused, this pin must be pulled-up to VDDIO.		
Reference Resistor	RBIAS	Al	Reference resistor connection pin. This pin requires connection of a 6.49K Ω ±0.1% resistor to ground.		
No Connect	NC	-	No connect. This pin must be left unconnected for proper operation.		
		Configur	ration Straps		
Operating Mode Configuration Straps 3-0	MODE[3:0]	VIS-VDD_XMII (PD)	These configuration straps are used to select the device's default mode of operation.		
PHY Address Configuration Straps 1-0	PHYAD[1:0]	VIS-VDD_XMII (PD)	These configuration straps are used to select the device's default PHY address.		
Regulator Off Configuration Strap	REG_OFF	VIS-VDDIO (PD)	This configuration strap is used to disable the internal 1.1V regulator.		
			Note: This configuration strap is available in the LAN8770R only.		
		Powe	r/Ground		
+1.1V Digital Core Power Supply	VDD11	Р	+1.1V digital core power supply.		
11.3			Both VDD11 pins should be connected together with a 1uF capacitor to ground.		
			Note: VDD11 is supplied via the internal voltage regulator when REG_OFF is strapped low for the LAN8770R. When REG_OFF is strapped high, an external +1.1V source is required. For the LAN8770M the internal regulator cannot be disabled.		
+1.8V to +3.3V Variable I/O Power Supply Input	VDDIO	Р	+1.8V to +3.3V variable I/O power supply input.		

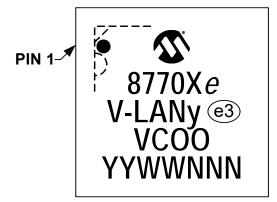
TABLE 2-3: PIN DESCRIPTIONS (CONTINUED)

Name	Symbol	Buffer Type	Description				
+1.8V to +3.3V Variable MII/RMII/RGMII Power Supply Input	VDD_XMII	Р	+1.8V to +3.3V variable MII/RMII/RGMII power supply input.				
+2.5V to +3.3V Variable VBAT Power Supply Input	VBAT	Р	+2.5V to +3.3V variable VBAT power supply input.				
+2.5V to +3.3V Variable T1 AFE Power Supply Input	VDDA	Р	+2.5V to +3.3V variable T1 Analog Front End (AFE) power supply input.				
+2.5V to +3.3V Variable T1 Common Power Supply Input	VDDACOM	Р	+2.5V to +3.3V variable T1 common power supply input.				
+2.5V to +3.3V Variable PLL Power Supply Input	VDDA_PLL	Р	+2.5V to +3.3V variable PLL power supply input. Note: This pin is available in the LAN8770R only.				
PLL Ground	VSSA_PLL	Р	PLL ground. Note: This pin is available in the LAN8770R only. Note: DO NOT connect this pin to ground on the board. Let it float, and decouple it to VDDA_PLL with a 100nF capacitor.				
Ground	VSS	Р	Common ground. This exposed pad must be connected to the ground plane with a via array.				

2.4 Buffer Types

TABLE 2-4: LAN8770 BUFFER TYPE DESCRIPTIONS

BUFFER	DESCRIPTION
Al	Analog input
AO	Analog output
AIO	Analog bi-directional
ICLK	Crystal oscillator input pin
OCLK	Crystal oscillator output pin
Р	Power pin
PU	70K (typical) internal pull-up. Unless otherwise noted in the pin description, internal pull-ups are always enabled.
	Internal pull-up resistors prevent unconnected inputs from floating. Do not rely on internal resistors to drive signals external to the device. When connected to a load that must be pulled high, an external resistor must be added.
PD	70K (typical) internal pull-down. Unless otherwise noted in the pin description, internal pull-downs are always enabled.
	Internal pull-down resistors prevent unconnected inputs from floating. Do not rely on internal resistors to drive signals external to the device. When connected to a load that must be pulled low, an external resistor must be added.
RGMII	RGMII reference clock output pin
VIS-VDDIO	Variable voltage Schmitt-triggered input (VDDIO power domain)
VIS-VDD_XMII	Variable voltage Schmitt-triggered input (VDD_XMII power domain)
VIS-VBAT	Variable voltage Schmitt-triggered input (VBAT power domain)
VO-VDDIO	Variable voltage output with 2/4/8/10 mA sink and 2/4/8/10 mA source (VDDIO power domain)
VO-VDD_XMII	Variable voltage output with 2/4/8/10 mA sink and 2/4/8/10 mA source (VDD_XMII power domain)
VO-VBAT	Variable voltage output with 2/4/8/10 mA sink and 2/4/8/10 mA source (VBAT power domain)
VOD	Variable open-drain output


Note: Digital signals are not 5V tolerant unless specified.

Note: Sink and source capabilities are dependent on the supplied voltage.

3.0 PACKAGE INFORMATION

3.1 **Top Marking**

Note: For the most current package drawings, see the Microchip Packaging Specification at: http://www.microchip.com/packaging.

Legend: X "R" for LAN8770R (36-QFN), "M" for LAN8770M (32-QFN)

> Temperature range designator е

Product revision У

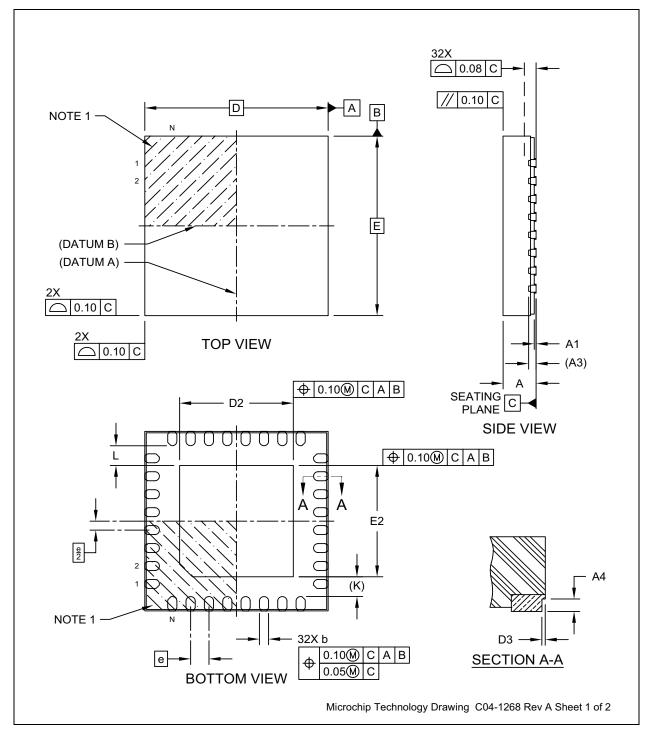
Pb-free JEDEC® designator for Matte Tin (Sn) e3

Plant of assembly COO Country of origin

Year code (last two digits of calendar year) YY WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code

Note:


In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

* Standard device marking consists of Microchip part number, year code, week code and traceability code. For device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

3.2 32-VQFN (LAN8770M Only)

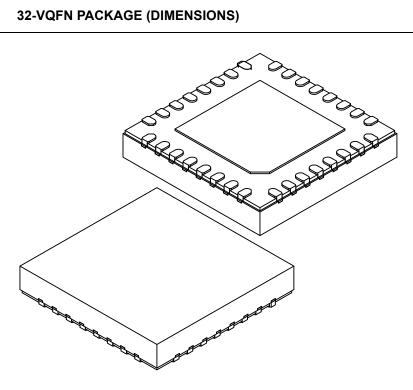

Note: For the most current package drawings, see the Microchip Packaging Specification at: http://www.microchip.com/packaging.

FIGURE 3-1: 32-VQFN PACKAGE (DRAWING)

For the most current package drawings, see the Microchip Packaging Specification at: Note: http://www.microchip.com/packaging.

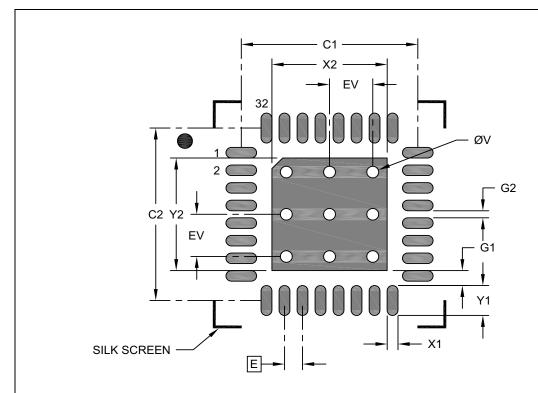
FIGURE 3-2: 32-VQFN PACKAGE (DIMENSIONS)

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		32	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.203 REF		
Overall Length	D	5.00 BSC		
Exposed Pad Length	D2	3.00	3.10	3.20
Overall Width	Е		5.00 BSC	
Exposed Pad Width	E2	3.00	3.10	3.20
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.35	0.40	0.45
Terminal-to-Exposed-Pad K		0.55 REF		
Step Height	A4	0.10	0.125	0.15
Step Length	D3	-	-	0.04

Notes:

- Pin 1 visual index feature may vary, but must be located within the hatched area.
 Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1268 Rev A Sheet 2 of 2

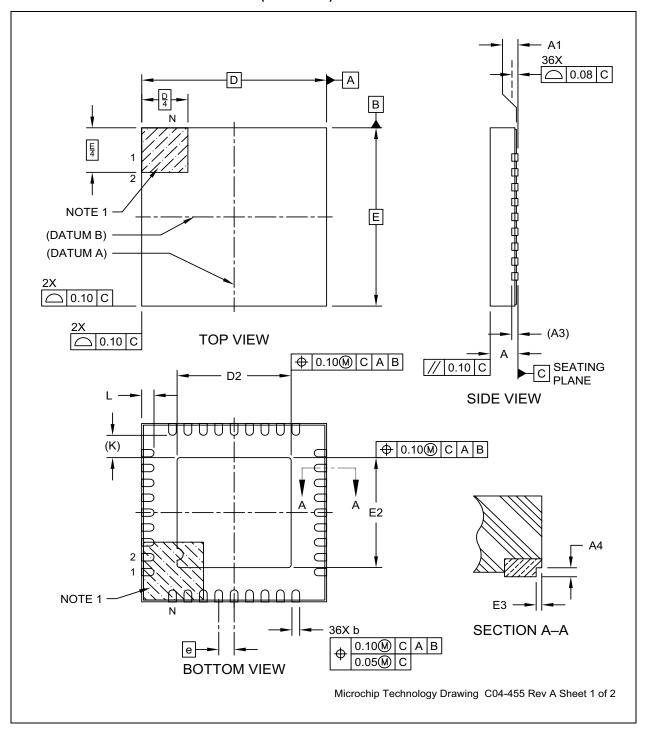
Note: For the most current package drawings, see the Microchip Packaging Specification at: http://www.microchip.com/packaging.

FIGURE 3-3: 32-VQFN PACKAGE (LAND-PATTERN)

RECOMMENDED LAND PATTERN

	N	/ILLIMETER:	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		0.50 BSC	
Optional Center Pad Width	X2			3.20
Optional Center Pad Length	Y2			3.20
Contact Pad Spacing	C1		4.90	
Contact Pad Spacing	C2		4.90	
Contact Pad Width (X32)	X1			0.30
Contact Pad Length (X32)	Y1			0.85
Contact Pad to Center Pad (X32)	G1	0.43		
Contact Pad to Center Pad (X28)	G2	0.20		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

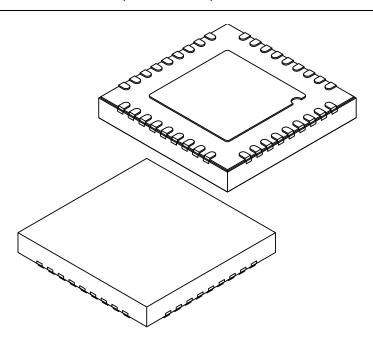
Notes:


- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-3268 Rev A

3.3 36-VQFN (LAN8770R Only)

Note: For the most current package drawings, see the Microchip Packaging Specification at: http://www.microchip.com/packaging.


FIGURE 3-4: 36-VQFN PACKAGE (DRAWING)

Note: For the most current package drawings, see the Microchip Packaging Specification at:

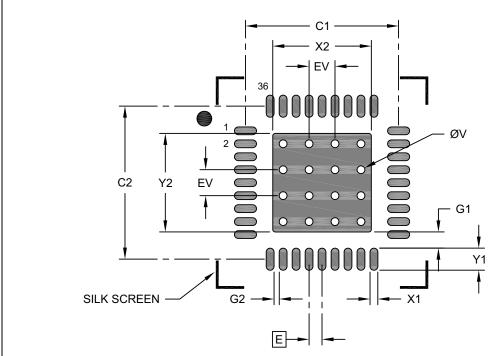
http://www.microchip.com/packaging.

FIGURE 3-5: 36-VQFN PACKAGE (DIMENSIONS)

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	Ν		36	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	0.035	0.05
Terminal Thickness	A3	0.203 REF		
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.60	3.70	3.80
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	3.60	3.70	3.80
Terminal Width	b	0.20	0.25	0.30
Terminal Length	L	0.35	0.40	0.45
Terminal-to-Exposed-Pad		0.75 REF		
Wettable Flank Step Cut Depth	A4	0.10	0.125	0.15
Wettable Flank Step Cut Width	E3	-	-	0.04

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-455 Rev A Sheet 2 of 2

Note: For the most current package drawings, see the Microchip Packaging Specification at: http://www.microchip.com/packaging.

FIGURE 3-6: 36-VQFN PACKAGE (LAND-PATTERN)

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Optional Center Pad Width	X2			3.80
Optional Center Pad Length	Y2			3.80
Contact Pad Spacing	C1		5.90	
Contact Pad Spacing	C2		5.90	
Contact Pad Width (X36)	X1			0.30
Contact Pad Length (X36)	Y1			0.85
Contact Pad to Center Pad (X36)	G1	0.20		
Contact Pad to Contact Pad (X32)	G2	0.20		
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes

- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2455 Rev A

LAN8770

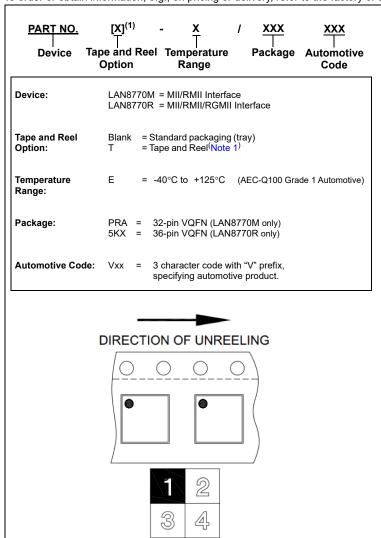

APPENDIX A: PRODUCT BRIEF REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level & Date	Section/Figure/Entry	Correction
DS00002550C (07-14-20)	Features	"Microchip Functional Safety Ready" - added to Highlights and Key Benefits
		"LinkMD" feature removed from Highlights
	Section 1.0, Introduction	Mention of "LinkMD" removed
DS00002550B (04-15-20)	Public Release	
DS00002550A (09-20-17)	All	Initial Release

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Examples:

- a) LAN8770M-E/PRAVAO Tray, -40°C to +125°C, 32-pin VQFN
- b) LAN8770MT-E/PRAVAO
- Tape & reel, -40°C to +125°C, 32-pin VQFN
- c) LAN8770R-E/5KXVAO
- Tray, -40°C to +125°C, 36-pin VQFN
-) LAN8770RT-E/5KXVAO
- Tape & reel, -40°C to +125°C, 36-pin VQFN

Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package.

Check with your Microchip Sales Office for package availability with the Tape and Reel option.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 9781522463986

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com
Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Fax: 317-773-5453 Tel: 317-536-2380 **Los Angeles**

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

<u>EV00X65A</u> <u>EV11K09A</u> <u>EV19G29A</u> <u>JANS1N4478US/TR</u> <u>JANTXV1N4974US/TR</u> <u>LAN8770M-I/PRA</u> <u>LAN8770MT-I/PRA</u> LAN8770MT-V/PRA LAN8770MT-V/PRA LAN8770MT-V/FRA LAN8770RT-V/5KX